Course Schedule

- Introduction
- 1. Data visualization: PDPs, KDEs, and CDFs
-2. detritalPy
- Break
- 3. Statistical metrics \& MDS
- 4. DZmds \& Dzstats application
- Break
- 5. Mixture modelling introduction \& theory
- 6. DZmix application
- 7. DZnmf application
- Wrap-up

Module 7 Learning goals

- Understand the theory behind non-negative matrix factorization
- Understand how NMF can be used to identify unknown sediment sources.
- Understand how breakpoint analysis is used to determine the optimum factorization rank.
- Apply NMF using DZnmf.

Module 7 Outline

- Non-negative matrix factorization
- NMF concept
- NMF basics
- Idealized example
- Known and factorized age distributions
- Known and factorized weights
- Determining the number of sources
- DZnmf
- Factorizing a synthetic data set
- Impact of the number of samples on factorization
- Determining the optimum number of sources
- NMF of an empirical data set.

Non-ñegative matrix factorization (NMF)

- "Bottom-up"
- Known sinks (Shown in Black)
- Unknown sources (Shown in Colors)
- Caveats
- N(sinks)>> N (sources)
- Sinks dissimilar
- Sinks well
 characterized (large n)
- Recycling is not always obvious

Module 7 Outline

- Non-negative matrix factorization
- NMF concept
- NMF basics
- Idealized example
- Known and factorized age distributions
- Known and factorized weights
- Determining the number of sources
- DZnmf
- Factorizing a synthetic data set
- Impact of the number of samples on factorization
- Determining the optimum number of sources
- NMF of an empirical data set.

Graphical representation

- Mixture distributions are matrices!
- Treat them as evenly spaced time series

NMF Basics

- V: original non-negative data (m x n)
- Samples in columns (n: detrital samples)
- Features in rows (m: i.e., values of KDEs or PDPs)
- W: basis vectors ($\mathrm{m} \times \mathrm{k}$)
- k : number of sources (rank)
- H: weights ($\mathrm{k} \times \mathrm{n}$)
- $(1,2)$ weighted elements of source 1 , 2, 3

$$
\cdot\left(W_{1,1} H_{1,2}+W_{1,2} H_{2,2}+W_{1,3} H_{3,2}\right)
$$

- $(4,4)$ weighted elements of source 1 , 2, 3

$$
\cdot\left(W_{4,1} H_{1,4}+W_{4,2} H_{2,4}+W_{4,3} H_{3,4}\right)
$$

- etc

NMF Basics

- i.e., columns of V are weighted sums of basis vectors (W)
$\begin{array}{cccc}\text { A) } & \underset{0}{\operatorname{PDPS}(1 \sigma=10 \%)} & & \text { Age (Ma) } \\ 5000 & 1500 & 2000\end{array}$

NMF Basics

- CAVEATS

- NMF is non-convex
- May find a local minimum
- Sensitive to initial conditions
- Initial conditions in DZnmf are randomized
- MULTIPLE RUNS!

Module 7 Outline

- Non-negative matrix factorization
- NMF concept
- NMF basics
- Idealized example
- Known and factorized age distributions
- Known and factorized weights
- Determining the number of sources
- DZnmf
- Factorizing a synthetic data set
- Impact of the number of samples on factorization
- Determining the optimum number of sources
- NMF of an empirical data set.

Known and factorized age distributions

- Synthetic sources from Sundell and Saylor (2017)
- KDEs 20 Myr bandwidth
- Input sources randomly mixed into 40 sink samples
- Factorized with no training or supervision
- Cross-correlation and Kuiper V indicate nearly perfect matches INPUT

FACTORIZED
Saylor et al. (2019, EPSL)

Known and factorized weights

$\mathrm{V}=\mathrm{W} \mathrm{H}+\mathrm{E}$

- Comparison of input and factorized weighting functions
- $R^{2}=0.95$

Saylor et al. (2019, EPSL)

Module 7 Outline

- Non-negative matrix factorization
- NMF concept
- NMF basics
- Idealized example
- Known and factorized age distributions
- Known and factorized weights
- Determining the number of sources
- DZnmf
- Factorizing a synthetic data set
- Impact of the number of samples on factorization
- Determining the optimum number of sources
- NMF of an empirical data set.

Determining the number of sources

$$
S S R_{1}=\sum_{r=2}^{r=x_{0}}\left(R_{r}-f\left(x_{r}\right)\right)^{2}
$$

and

$$
\operatorname{SSR}_{2}=\sum_{r=x_{b}}^{r=n}\left(R_{r}-\left(g\left(x_{r}\right)\right)^{2}\right.
$$

- $R_{r}=$ final residual

Saylor et al. (2019, EPSL)

- $f(x)$ and $g(x)=$ predicted value for linear fit
- CAVEATS
- The breakpoint is dependent on the ranks tested (Test to a higher rank)

Module 7 Outline

- Non-negative matrix factorization
- NMF concept
- NMF basics
- Idealized example
- Known and factorized age distributions
- Known and factorized weights
- Determining the number of sources
- DZnmf: see Step-by-Step guide for instructions
- Factorizing a synthetic data set
- Impact of the number of samples on factorization
- Determining the optimum number of sources
- NMF of an empirical data set.

Optimization

- 1. Initialize the entries in \mathbf{W} and \mathbf{H} with random positive
- values
-2. Update W
-3. Update H
- 4. Iterate steps 2 and 3

Input controls on results (W)

- Greater dissimilarity between input sinks \&
- More sink samples Results in
- Closer match between factorized and known sources

Input controls on results (W)

- Greater dissimilarity between input sinks \&
- More sink samples Results in
- Closer match between factorized and known sources

Input controls on results (W)

- Greater sink size \&
- More sink samples

Results in

- Closer match between factorized and known sources

Input controls on results (W)

- Greater sink size \&
- More sink samples Results in
- Closer match between factorized and known sources

Input controls on results (H)

- Greater sink size
\&
- More sink samples

Results in

- Closer match between factorized and known sources

Input controls on results (H)

- More sink samples

Results in

- Closer match between factorized and known sources
- Greater dissimilarity between sink samples does not affect similarity of factorized and known weights.

