Course Schedule

- Introduction
- 1. Data visualization: PDPs, KDEs, and CDFs
- 2. detritalPy
 - Break
- 3. Statistical metrics & MDS
- 4. DZmds & Dzstats application
 - Break
- 5. Mixture modelling introduction & theory
- 6. DZmix application
- 7. DZnmf application
- Wrap-up

Module 7 Learning goals

- Understand the theory behind non-negative matrix factorization
- Understand how NMF can be used to identify unknown sediment sources.
- Understand how breakpoint analysis is used to determine the optimum factorization rank.
- Apply NMF using DZnmf.

- Non-negative matrix factorization
 - NMF concept
 - NMF basics
 - Idealized example
 - Known and factorized age distributions
 - Known and factorized weights
- Determining the number of sources
- DZnmf
 - Factorizing a synthetic data set
 - Impact of the number of samples on factorization
 - Determining the optimum number of sources
 - NMF of an empirical data set.

Non-negative matrix factorization (NMF) "Bottom-up"

• Known sinks (Shown in Black)

Factorization

- Unknown sources (Shown in Colors)
- Caveats
 - N(sinks)>> N (sources)
 - Sinks dissimilar
 - Sinks well characterized (large n)
 - Recycling is not always obvious

Inspired by Sharman and Johnstone (2017, EPSL)

- Non-negative matrix factorization
 - NMF concept
 - NMF basics
 - Idealized example
 - Known and factorized age distributions
 - Known and factorized weights
- Determining the number of sources
- DZnmf
 - Factorizing a synthetic data set
 - Impact of the number of samples on factorization
 - Determining the optimum number of sources
 - NMF of an empirical data set.

Graphical representation

- Mixture distributions are matrices!
- Treat them as evenly spaced time series

NMF Basics

- V: original non-negative data (m x n)
 - Samples in columns (n: detrital samples)
 - Features in rows (m: i.e., values of KDEs or PDPs)
- W: basis vectors (m x k)
 - k: number of sources (rank)
- H: weights (k x n)
 - (1,2) weighted elements of source 1, 2, 3
 - $(W_{1,1}H_{1,2} + W_{1,2}H_{2,2} + W_{1,3}H_{3,2})$
 - (4,4) weighted elements of source 1, 2, 3
 - $(W_{4,1}H_{1,4} + W_{4,2}H_{2,4} + W_{4,3}H_{3,4})$

• etc

(Lee & Seung, 1999 & 2001)

NMF Basics

• i.e., columns of V are weighted sums of basis vectors (W)

NMF Basics

- CAVEATS
- NMF is non-convex
 - May find a local minimum
 - Sensitive to initial conditions
 - Initial conditions in DZnmf are randomized
 - MULTIPLE RUNS!

- Non-negative matrix factorization
 - NMF concept
 - NMF basics
 - Idealized example
 - Known and factorized age distributions
 - Known and factorized weights
- Determining the number of sources
- DZnmf
 - Factorizing a synthetic data set
 - Impact of the number of samples on factorization
 - Determining the optimum number of sources
 - NMF of an empirical data set.

Known and factorized age distributions V = W H + E

- Synthetic sources from Sundell and Saylor (2017)
- KDEs 20 Myr bandwidth
- Input sources randomly mixed into 40 sink samples
- Factorized with no training or supervision
- Cross-correlation and Kuiper V indicate nearly perfect matches INPUT.

Known and factorized weights

V=WH + E

Comparison of input and factorized weighting functions

• R² = 0.95

- Non-negative matrix factorization
 - NMF concept
 - NMF basics
 - Idealized example
 - Known and factorized age distributions
 - Known and factorized weights
- Determining the number of sources
- DZnmf
 - Factorizing a synthetic data set
 - Impact of the number of samples on factorization
 - Determining the optimum number of sources
 - NMF of an empirical data set.

Determining the number of sources

- f(x) and g(x) = predicted value for linear fit
- CAVEATS
 - The breakpoint is dependent on the ranks tested (Test to a higher rank)

- Non-negative matrix factorization
 - NMF concept
 - NMF basics
 - Idealized example
 - Known and factorized age distributions
 - Known and factorized weights
- Determining the number of sources
- DZnmf: see Step-by-Step guide for instructions
 - Factorizing a synthetic data set
 - Impact of the number of samples on factorization
 - Determining the optimum number of sources
 - NMF of an empirical data set.

Optimization

- 1. Initialize the entries in W and H with random positive
- values
- 2. Update **W**
- 3. Update H
- 4. Iterate steps 2 and 3

 Greater dissimilarity between input sinks

&

- More sink samples
 Results in
- Closer match between factorized and known sources

- Greater dissimilarity between input sinks &
- More sink samples
 Results in
- Closer match between factorized and known sources

- Greater sink size
 &
- More sink samples
 Results in
- Closer match between factorized and known sources

- Greater sink size
 &
- More sink samples
 Results in
- Closer match between factorized and known sources

- Greater sink size
 &
- More sink samples
 Results in
- Closer match between factorized and known sources

- More sink samples
 Results in
- Closer match between factorized and known sources
- Greater dissimilarity between sink samples does not affect similarity of factorized and known weights.

