# **Course Schedule**

- Introduction
- 1. Data visualization: PDPs, KDEs, and CDFs
- 2. detritalPy
  - Break
- 3. Statistical metrics & MDS
- 4. DZmds & DZstats
  - Break
- 5. Mixture modelling introduction & theory
- 6. DZmix application
- 7. DZnmf application
- Wrap-up

## Module 3 Learning goals

- Understand how statistical metrics are calculated
  - What are the strengths and limitations of each metric
- Understand how metric and non-metric multi-dimensional scaling (MDS) proceeds.
- Understand the difference between metric and non-metric MDS
- Be able interpret MDS plots and evaluate their quality.

### **Module 3 Outline**

- Some metrics applicable to detrital geochronology
  - Metrics based on CDF
    - Kolmogorov-Smirnov distance (D value)
    - Kuiper distance (V value)
  - Metrics based on PDPs/KDEs
    - Similarity
    - Mismatch/Likeness
    - Cross-correlation
- Application to multi-dimensional scaling (MDS)

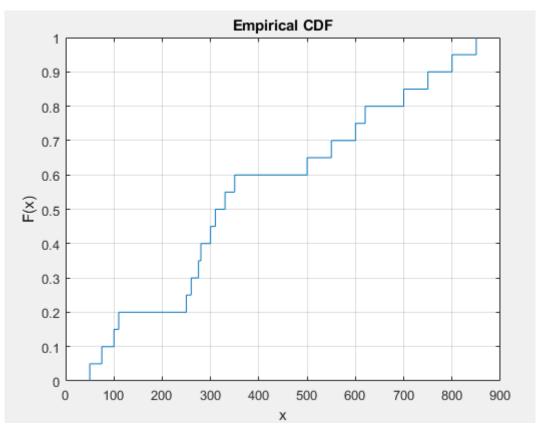
### **Module 3 Outline**

- Some metrics applicable to detrital geochronology
  - Metrics based on CDF
    - Kolmogorov-Smirnov distance (D value)
    - Kuiper distance (V value)
  - Metrics based on PDPs/KDEs
    - Similarity
    - Mismatch/Likeness
    - Cross-correlation
- Application to multi-dimensional scaling (MDS)

- EDF and CDF
  - The empirical distribution function (EDF, ECDF, sometimes CDF) is a non-parametric estimator of the underlying cumulative distribution function (CDF)
    - EDF = CDF as n => ∞
  - Calculating ECDF

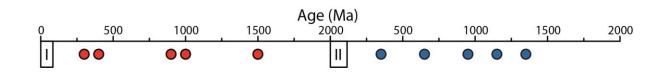
$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I(X_i \le x)$$

- Where I = 1 if  $Xi \le x$  or 0 otherwise
- For all real numbers x
- The ECDF ranges from 0 to 1 with step heights of 1/n located at the values Xi.



• 2 samples, 5 ages each

| Sample 2 ages (Ma) |
|--------------------|
| 350                |
| 650                |
| 950                |
| 1150               |
| 1350               |
|                    |



| • | 2 | sampl | es, | 5 | ages | each |
|---|---|-------|-----|---|------|------|
|---|---|-------|-----|---|------|------|

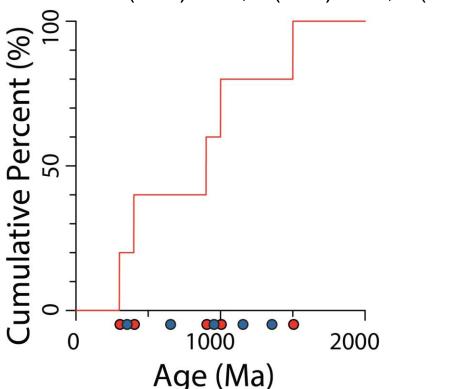
• Merged ages

Merged ages (Ma) CDF Sample 1 CDF Sample 2 CDF1-CDF2 CDF2-CDF1 



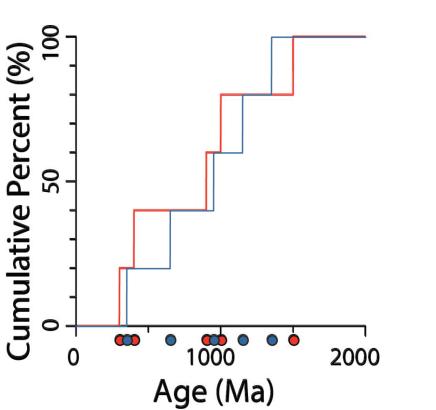
1500

Merged ages (Ma) CD • 2 samples, 5 ages each 300 350 Merged ages 400 650 **Cumulative Distribution Function 1** 900 Because CDF1 is a function, 950 ullet1000 • F(350)=0.2, F(650)=0.4, F(926.5)=0.6, etc 1150 1350



| DF Sample 1 | CDF Sample 2 | CDF1-CDF2 | CDF2-CDF1 |
|-------------|--------------|-----------|-----------|
| 0.2         | 2            |           |           |
| 0.2         | 2            |           |           |
| 0.4         | 4            |           |           |
| 0.4         | 4            |           |           |
| 0.0         | 5            |           |           |
| 0.6         | 6            |           |           |
| 0.8         | 3            |           |           |
| 0.8         | 3            |           |           |
| 0.8         | 3            |           |           |
| •           | 1            |           |           |
|             |              |           |           |

- 2 samples, 5 ages each
- Merged ages
- Cumulative Distribution Function 1
- Cumulative Distribution Function 2



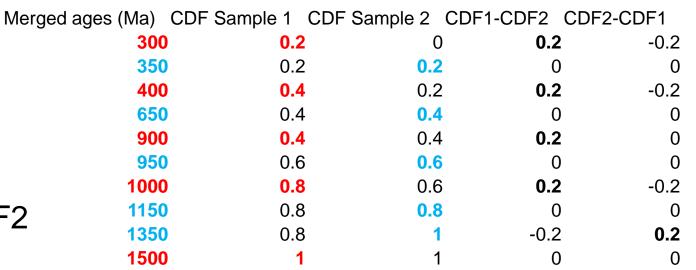
| Merged ages (Ma) | CDF Sample | 1 CDF Sample | 2 CDF1- | CDF2 | CDF2-CDF1 |
|------------------|------------|--------------|---------|------|-----------|
| 300              | D (        | .2           | 0       |      |           |
| 350              | 0 (        | ).2          | 0.2     |      |           |
| 400              | 0 0        | ).4          | 0.2     |      |           |
| 650              | 0 (        | ).4          | 0.4     |      |           |
| 900              | 0 0        | ).6          | 0.4     |      |           |
| 950              | 0 (        | ).6          | 0.6     |      |           |
| 1000             | 0 0        | .8           | 0.6     |      |           |
| 1150             | 0 (        | ).8          | 0.8     |      |           |
| 1350             | 0 (        | ).8          | 1       |      |           |
| 1500             | D          | 1            | 1       |      |           |
|                  |            |              |         |      |           |

- 2 samples, 5 ages each
- Merged ages
- Cumulative Distribution Function 1
- Cumulative Distribution Function 2
- Difference between CDF1 and CDF2 Cumulative Percent (%) máx(CDF(II) **-CDF(I)**) = 0.2 max(CDF(I) -CDF(II)) = 0.2 2000 1000 0

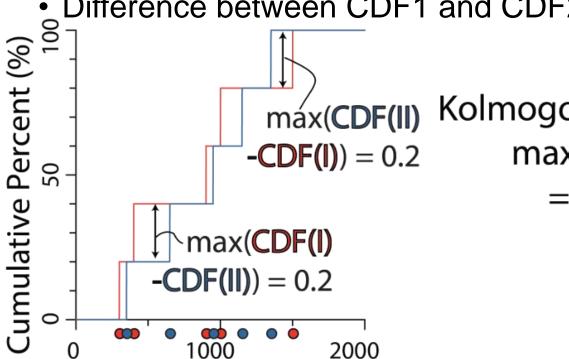
Age (Ma)

| Mergeo | l ages (Ma) CDF | Sample 1 CDF | Sample 2 CDF1 | -CDF2 CDF2 | 2-CDF1 |
|--------|-----------------|--------------|---------------|------------|--------|
|        | 300             | 0.2          | 0             | 0.2        | -0.2   |
|        | 350             | 0.2          | 0.2           | 0          | 0      |
|        | 400             | 0.4          | 0.2           | 0.2        | -0.2   |
|        | <b>650</b>      | 0.4          | 0.4           | 0          | 0      |
|        | 900             | 0.6          | 0.4           | 0.2        | 0      |
|        | <b>950</b>      | 0.6          | 0.6           | 0          | 0      |
|        | 1000            | 0.8          | 0.6           | 0.2        | -0.2   |
| F2     | <b>1150</b>     | 0.8          | 0.8           | 0          | 0      |
|        | <b>1350</b>     | 0.8          | 1             | -0.2       | 0.2    |
|        | 1500            | 1            | 1             | 0          | 0      |

- 2 samples, 5 ages each
- Merged ages
- Cumulative Distribution Function 1
- Cumulative Distribution Function 2
- Difference between CDF1 and CDF2



Kolmogorov-Smirnov test D-value máx(CDF(II) max|CDF(II)-CDF(I)| -CDF(I)) = 0.2 = 0.2



Age (Ma)

### **Module 3 Outline**

- Some metrics applicable to detrital geochronology
  - Metrics based on CDF
    - Kolmogorov-Smirnov distance (D value)
    - Kuiper distance (V value)
  - Metrics based on PDPs/KDEs
    - Similarity
    - Mismatch/Likeness
    - Cross-correlation
- Application to multi-dimensional scaling (MDS)

# **Kuiper distance (V value)**

• 2 samples, 5 ages each

Age (Ma)

• Merged ages

0

- **Cumulative Distribution Function 1**
- **Cumulative Distribution Function 2**

Difference between CDF1 and CDF2 Cumulative Percent (%) 0 50 100

| Merge | d ages (Ma) CD | F Sample 1 C | DF Sample 2 | CDF1-CDF2 | CDF2-CDF1 |
|-------|----------------|--------------|-------------|-----------|-----------|
|       | 300            | 0.2          | 0           | 0.2       | -0.2      |
|       | <b>350</b>     | 0.2          | 0.2         | 0         | 0         |
|       | 400            | 0.4          | 0.2         | 0.2       | -0.2      |
|       | <b>650</b>     | 0.4          | 0.4         | 0         | 0         |
|       | 900            | 0.4          | 0.4         | 0.2       | 0         |
|       | <b>950</b>     | 0.6          | 0.6         | 0         | 0         |
|       | 1000           | 0.8          | 0.6         | 0.2       | -0.2      |
| F2    | <b>1150</b>    | 0.8          | 0.8         | 0         | 0         |
|       | <b>1350</b>    | 0.8          | 1           | -0.2      | 0.2       |
|       | 1500           | 1            | 1           | 0         | 0         |

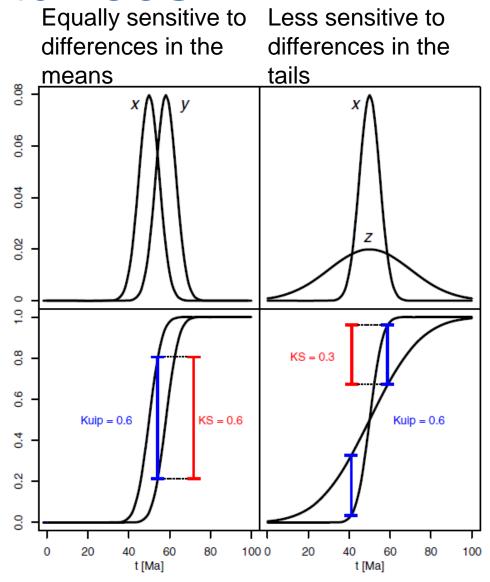
Kolmogorov-Smirnov test D-value máx(CDF(II max|CDF(II)-CDF(I)| = 0.2

2000

per test V-value max(CDF(II)-CDF(I)) + max(CDF(I)-CDF(II)) = 0.4

## Limitation of K-S distances

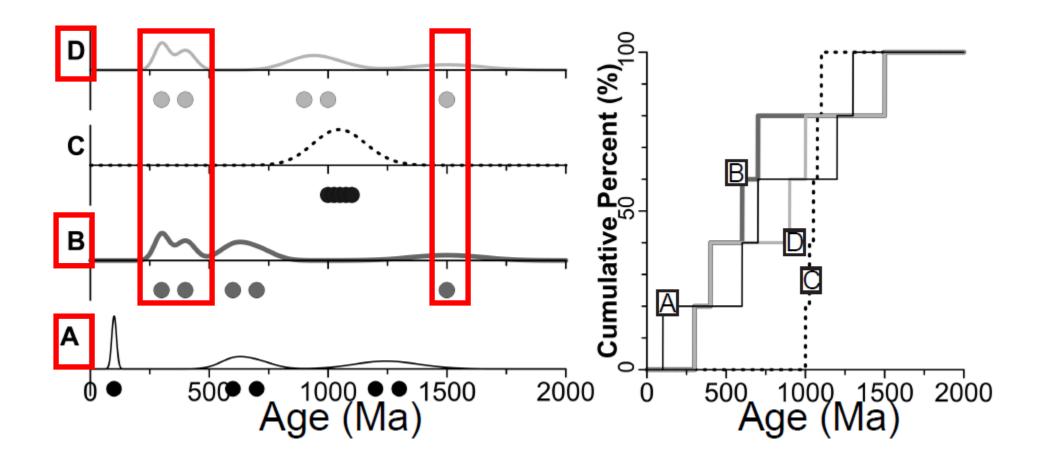
- 1) More sensitive at the center of the distribution than at the tails
  - Due to monotonically increasing nature of CDF
  - As the CDF approaches 1 or 0, the variance goes to 0



Vermeesch (2018)

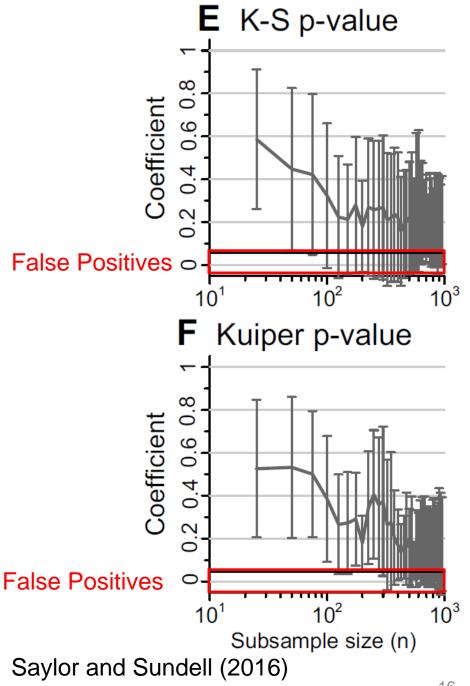
### **Limitations of Kuiper and K-S distances**

- 2) Sensitive to age proportions and distribution
  - D value for AD ( $^{\circ}$ ) and BD ( $^{\circ}$ ) = 0.2
  - V value for AD (0) and BD (3) = 0.4



## A note on p values

- Typically if the p-value is less than our confidence level, the hypothesis of common derivation is rejected.
  - For example a p value < 0.05 indicates that the null hypothesis of common derivation can be rejected at the 95% confidence level.
- PROBLEM: over-occurrence of Type 1 errors
  - false positive (i.e., incorrectly rejecting the null hypothesis, Saylor and Sundell, 2016)
- There is always a sample size at which differences between samples are observable
  - Vermeesch (2013, 2018)

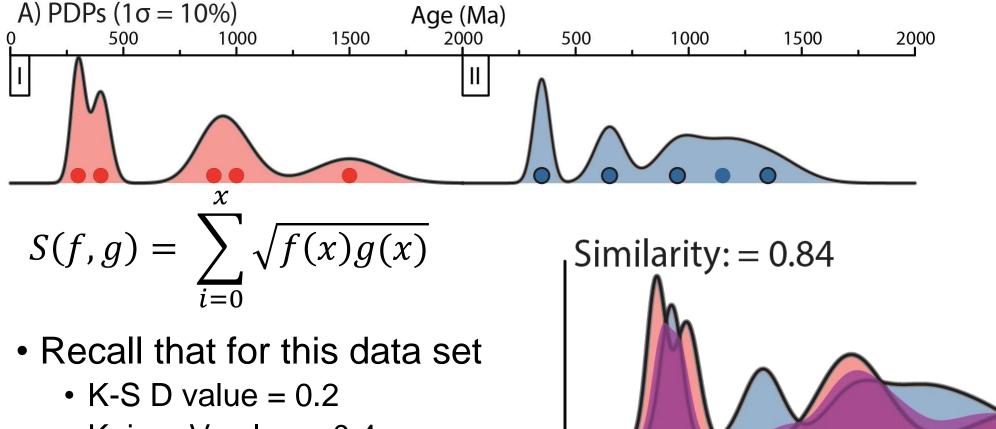


### **Module 3 Outline**

- Some metrics applicable to detrital geochronology
  - Metrics based on CDF
    - Kolmogorov-Smirnov distance (D value)
    - Kuiper distance (V value)
  - Metrics based on PDPs/KDEs
    - Similarity
    - Mismatch/Likeness
    - Cross-correlation
- Application to multi-dimensional scaling (MDS)

# Similarity

- Bhattacharya distance (Bhattacharya, 1943; 1946)
- Introduced to detrital geochronology by Gehrels (2000)



0

1000

Age (Ma)

500

1500

2000

18

• Kuiper V value = 0.4

### **Module 3 Outline**

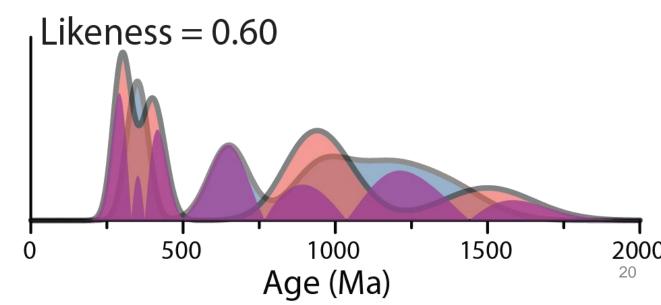
- Some metrics applicable to detrital geochronology
  - Metrics based on CDF
    - Kolmogorov-Smirnov distance (D value)
    - Kuiper distance (V value)
  - Metrics based on PDPs/KDEs
    - Similarity
    - Mismatch/Likeness
    - Cross-correlation
- Application to multi-dimensional scaling (MDS)

### Mismatch/Likeness

• Mismatch introduced by Amidon et al. (2005)

$$M(f,g) = \frac{1}{2} \sum_{i=0}^{x} |f(x) - g(x)|$$

- Ranges from 1 (no overlap) to 0 (identical)
- Modified by Satkoski et al. (2013) to Likeness L(f,g) = 1 M(f,g)
  - Range: 0 (no overlap) to 1 (identical)
- Recall that for this data set
  - D = 0.2
  - V = 0.4
  - S = 0.84



### **Module 3 Outline**

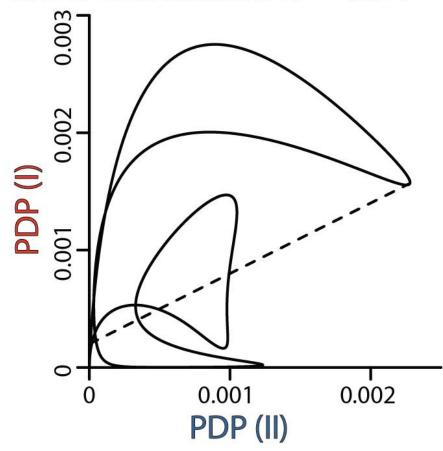
- Some metrics applicable to detrital geochronology
  - Metrics based on CDF
    - Kolmogorov-Smirnov distance (D value)
    - Kuiper distance (V value)
  - Metrics based on PDPs/KDEs
    - Similarity
    - Mismatch/Likeness
    - Cross-correlation
- Application to multi-dimensional scaling (MDS)

### **Cross-correlation**

- Widely used in signal processing, template matching, image matching, and geophysics Cross-correlation: R<sup>2</sup> = 0.24
- Pearson's correlation coefficient for colocated PDPs or KDEs
  - Squared to ensure range of 0-1

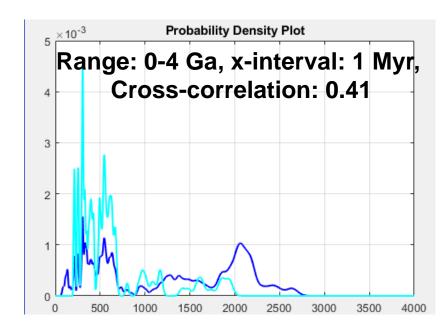
• 
$$R(f,g)^2 = \left(\frac{\sum_{i=0}^{x} (f_i - \bar{f})(g_i - g)}{\sqrt{\sum_{i=0}^{x} (f_i - \bar{f})^2} \sqrt{\sum_{i=0}^{x} (g_i - g)^2}}\right)^2$$

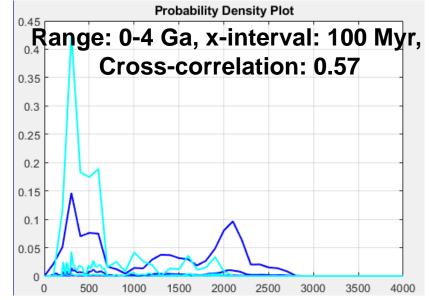
- Ranges from 0 (no correlation) to 1 (perfectly correlated)
- Sensitive to the location and distribution of modes



# A note on intervals & resolution

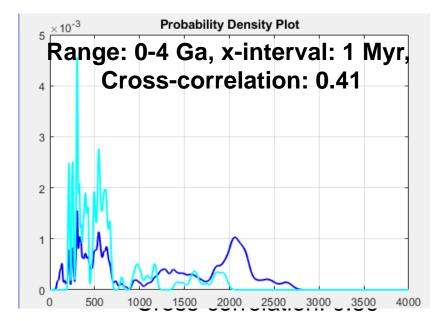
- When applied to discretized functions comparison metrics depend on
  - Coarseness of discretization (1 Myr? 0.5 Myr? 10 Myr?)
  - Applies to PDPs, KDEs, or CDFs produced from summation of them.
- Comparison metrics always depend on range
  - What are the min and max ages in the comparison?

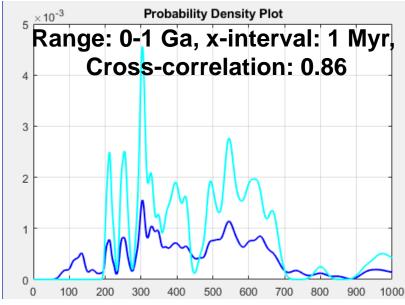




# A note on intervals & resolution

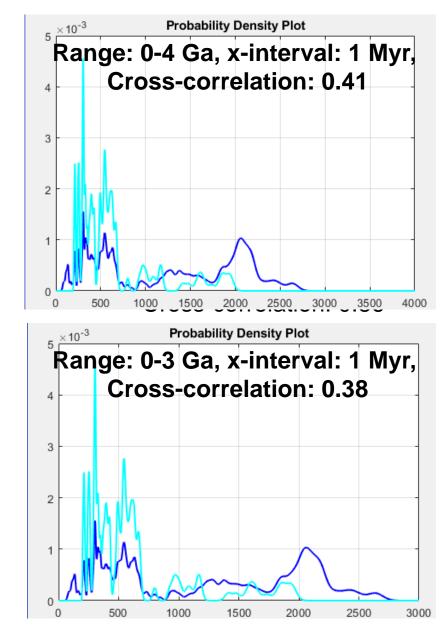
- When applied to discretized functions comparison metrics depend on
  - Coarseness of discretization (1 Myr? 0.5 Myr? 10 Myr?)
  - Applies to PDPs, KDEs, or CDFs produced from summation of them.
- Comparison metrics always depend on range
  - What are the min and max ages in the comparison?





# A note on intervals & resolution

- When applied to discretized functions comparison metrics depend on
  - Coarseness of discretization (1 Myr? 0.5 Myr? 10 Myr?)
  - Applies to PDPs, KDEs, or CDFs produced from summation of them.
- Comparison metrics always depend on range
  - What are the min and max ages in the comparison?
  - For Cross-correlation even zeros matter!



### **Module 3 Outline**

- Some metrics applicable to detrital geochronology
  - Metrics based on CDF
    - Kolmogorov-Smirnov distance (D value)
    - Kuiper distance (V value)
  - Metrics based on PDPs/KDEs
    - Similarity
    - Mismatch/Likeness
    - Cross-correlation
- Application to multidimensional scaling (MDS)

### **Application to Multidimensional scaling (MDS)**

- Converts dissimilarity to distance
  - By iterative rearrangement of the samples in Cartesian space
  - $\hat{d}(i,j) = f[p(i,j)]$ 
    - p(i,j) = (dis)similarity between samples i and j
    - $\hat{d}(i,j) = \text{distance between samples } i \text{ and } j \text{ in Cartesian space (transformation of } p(i,j))$ 
      - Referred to as "disparity" or "approximated distances" to distinguish it from the final plotted distance.
    - d(i, j) =final plotted distance between samples *i* and *j* in Cartesian space
  - Goal to minimize stress function  $|\hat{d}(i,j) d(i,j)|$
- Types
  - Nonmetric (qualitative)
  - Metric (quantitative)

### **Metric MDS**

 "MDS [is] a method that represents (dis)similarity data as distances in a low dimensional space in order to make these data accessible to visual inspection and exploration" Borg and Groenen (1997) TABLE 2.1. Distances between ten cities.

|    | 1   | 2    | 3    | 4    | 5   | 6          | 7   | 8          | 9   | 10  |
|----|-----|------|------|------|-----|------------|-----|------------|-----|-----|
| 1  | 0   | 569  | 667  | 530  | 141 | 140        | 357 | 396        | 570 | 190 |
| 2  | 569 | 0    | 1212 | 1043 | 617 | 446        | 325 | 423        | 787 | 648 |
| 3  | 667 | 1212 | 0    | 201  | 596 | 768        | 923 | 882        | 714 | 714 |
| 4  | 530 | 1043 | 201  | 0    | 431 | 608        | 740 | 690        | 516 | 622 |
| 5  | 141 | 617  | 596  | 431  | 0   | 177        | 340 | 337        | 436 | 320 |
| 6  | 140 | 446  | 768  | 608  | 177 | 0          | 218 | <b>272</b> | 519 | 302 |
| 7  | 357 | 325  | 923  | 740  | 340 | <b>218</b> | 0   | 114        | 472 | 514 |
| 8  | 396 | 423  | 882  | 690  | 337 | <b>272</b> | 114 | 0          | 364 | 573 |
| 9  | 569 | 787  | 714  | 516  | 436 | 519        | 472 | 364        | 0   | 755 |
| 10 | 190 | 648  | 714  | 622  | 320 | 302        | 514 | 573        | 755 | 0   |

Borg, I., and P. Groenen (1997), Modern Multidimensional Scaling: Theory and Applications, Springer New York.

TABLE 2.1. Distances between ten cities.

|    | 1   | 2    | 3    | 4          | 5   | 6          | 7   | 8   | 9   | 10  |
|----|-----|------|------|------------|-----|------------|-----|-----|-----|-----|
| 1  | 0   | 569  | 667  | 530        | 141 | 140        | 357 | 396 | 570 | 190 |
| 2  | 569 | 0    | 1212 | 1043       | 617 | 446        | 325 | 423 | 787 | 648 |
| 3  | 667 | 1212 | 0    | 201        | 596 | 768        | 923 | 882 | 714 | 714 |
| 4  | 530 | 1043 | 201  | 0          | 431 | 608        | 740 | 690 | 516 | 622 |
| 5  | 141 | 617  | 596  | 431        | 0   | 177        | 340 | 337 | 436 | 320 |
| 6  | 140 | 446  | 768  | 608        | 177 | 0          | 218 | 272 | 519 | 302 |
| 7  | 357 | 325  | 923  | <b>740</b> | 340 | 218        | 0   | 114 | 472 | 514 |
| 8  | 396 | 423  | 882  | 690        | 337 | <b>272</b> | 114 | 0   | 364 | 573 |
| 9  | 569 | 787  | 714  | 516        | 436 | 519        | 472 | 364 | 0   | 755 |
| 10 | 190 | 648  | 714  | 622        | 320 | 302        | 514 | 573 | 755 | 0   |

- Example from Borg and Groenen (1997) of disances between European cities
- Plot maximum distance

d<sub>12</sub> = s ·1212

3

2 1

TABLE 2.1. Distances between ten cities.

|    | 1 1 | 0    | 0    |            | -          | 0          | -   | 0   | 0   |     |
|----|-----|------|------|------------|------------|------------|-----|-----|-----|-----|
|    | 1   | 2    | 3    | 4          | 5          | 6          | 7   | 8   | 9   | 10  |
| 1  | 0   | 569  | 667  | 530        | 141        | 140        | 357 | 396 | 570 | 190 |
| 2  | 569 | 0    | 1212 | 1043       | 617        | 446        | 325 | 423 | 787 | 648 |
| 3  | 667 | 1212 | 0    | 201        | 596        | 768        | 923 | 882 | 714 | 714 |
| 4  | 530 | 1043 | 201  | 0          | 431        | 608        | 740 | 690 | 516 | 622 |
| 5  | 141 | 617  | 596  | 431        | 0          | 177        | 340 | 337 | 436 | 320 |
| 6  | 140 | 446  | 768  | 608        | 177        | 0          | 218 | 272 | 519 | 302 |
| 7  | 357 | 325  | 923  | <b>740</b> | <b>340</b> | 218        | 0   | 114 | 472 | 514 |
| 8  | 396 | 423  | 882  | 690        | 337        | <b>272</b> | 114 | 0   | 364 | 573 |
| 9  | 569 | 787  | 714  | 516        | 436        | 519        | 472 | 364 | 0   | 755 |
| 10 | 190 | 648  | 714  | 622        | 320        | 302        | 514 | 573 | 755 | 0   |

- Triangulate intermediate distances
- 9 or 9'?
  - It doesn't matter
  - Just a reflection (see next slides)

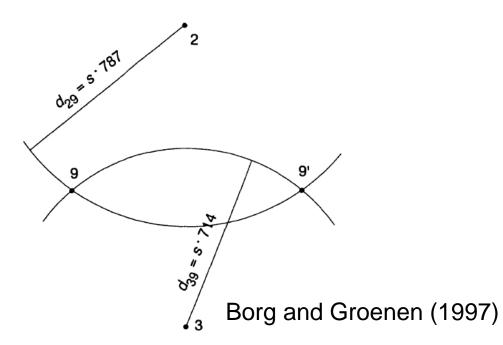


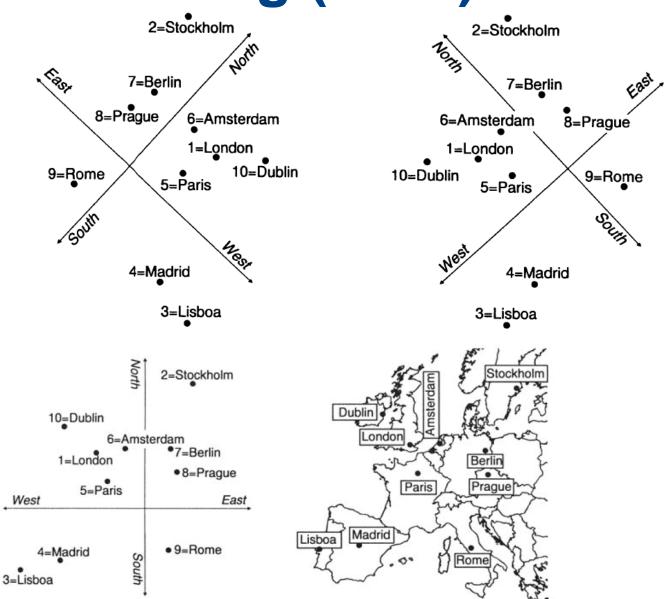
TABLE 2.1. Distances between ten cities.

|    | 1   | 2          | 3    | 4    | 5   | 6          | 7   | 8   | 9   | 10  |
|----|-----|------------|------|------|-----|------------|-----|-----|-----|-----|
| 1  | 0   | 569        | 667  | 530  | 141 | 140        | 357 | 396 | 570 | 190 |
| 2  | 569 | 0          | 1212 | 1043 | 617 | 446        | 325 | 423 | 787 | 648 |
| 3  | 667 | 1212       | 0    | 201  | 596 | 768        | 923 | 882 | 714 | 714 |
| 4  | 530 | 1043       | 201  | 0    | 431 | 608        | 740 | 690 | 516 | 622 |
| 5  | 141 | 617        | 596  | 431  | 0   | 177        | 340 | 337 | 436 | 320 |
| 6  | 140 | <b>446</b> | 768  | 608  | 177 | 0          | 218 | 272 | 519 | 302 |
| 7  | 357 | 325        | 923  | 740  | 340 | <b>218</b> | 0   | 114 | 472 | 514 |
| 8  | 396 | 423        | 882  | 690  | 337 | 272        | 114 | 0   | 364 | 573 |
| 9  | 569 | 787        | 714  | 516  | 436 | 519        | 472 | 364 | 0   | 755 |
| 10 | 190 | 648        | 714  | 622  | 320 | 302        | 514 | 573 | 755 | 0   |

- Final map
- Constrained by multiple pairs (multiple distances)
  - e.g., location of 9 constrained by 9 pairs
  - etc



- Rotate, Reflect, Scale
- Its all good!



Borg and Groenen (1997)

### **Nonmetric MDS**

- Assumes that the degree of separation is not as important as the relative ranking of the samples
- Works on the same basis as metric
  - But narrows down zones of occupation

TABLE 2.3. Ranks for data in Table 2.1; the smallest distance has rank 1.

|    | 1  | 2  | 3         | 4  | 5  | 6         | 7         | 8         | 9         | 10        |
|----|----|----|-----------|----|----|-----------|-----------|-----------|-----------|-----------|
| 1  |    | 26 | 34        | 25 | 3  | 2         | 14        | 16        | 27        | 5         |
| 2  | 26 | -  | <b>45</b> | 44 | 31 | 20        | 11        | 17        | 41        | 33        |
| 3  | 34 | 45 | -         | 6  | 29 | 40        | 43        | 42        | 36        | 36        |
| 4  | 25 | 44 | 6         |    | 18 | 30        | 38        | 35        | <b>23</b> | <b>32</b> |
| 5  | 3  | 31 | 29        | 18 | -  | 4         | 13        | 12        | 19        | 10        |
| 6  | 2  | 20 | 40        | 30 | 4  |           | 7         | 8         | <b>24</b> | 9         |
| 7  | 14 | 11 | 43        | 38 | 13 | 7         |           | 1         | <b>21</b> | <b>22</b> |
| 8  | 16 | 17 | 42        | 35 | 12 | 8         | 1         | -         | 15        | 28        |
| 9  | 27 | 41 | 36        | 23 | 19 | <b>24</b> | <b>21</b> | 15        | -         | 39        |
| 10 | 5  | 33 | 36        | 32 | 10 | 9         | 22        | <b>28</b> | 39        |           |

### **Comparison of metric and nonmetric MDS**

Usually very similar

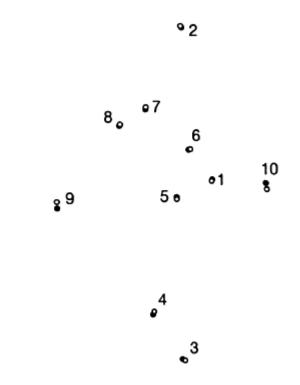
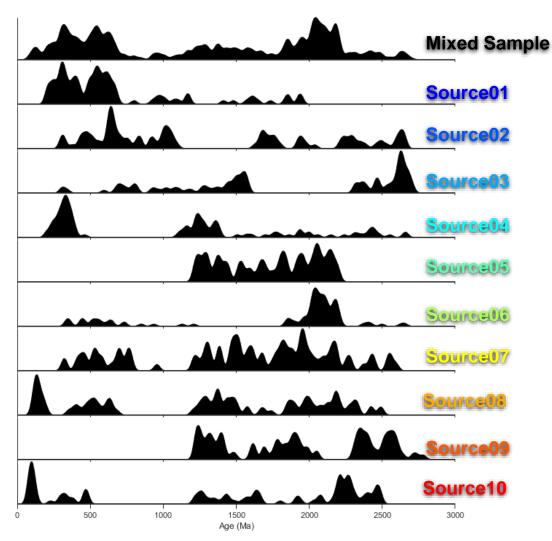
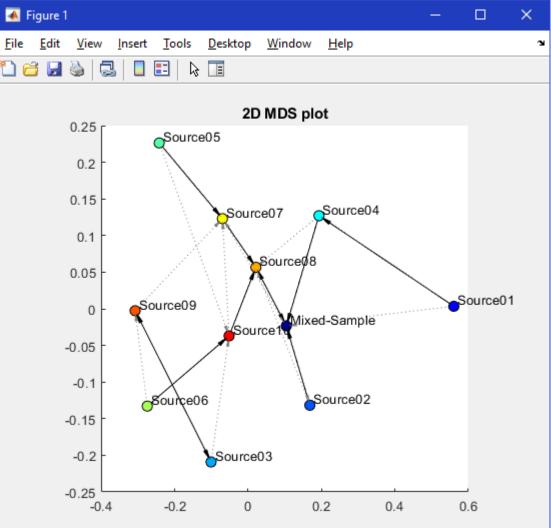


FIGURE 2.14. Comparing ratio MDS (solid points) and ordinal MDS (open circles) after fitting the latter to the former.

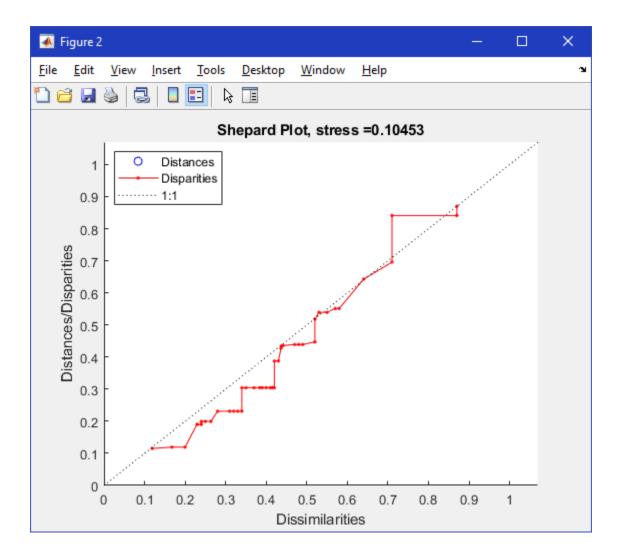
Borg and Groenen (1997)

Nonmetric MDS based on K-S D value

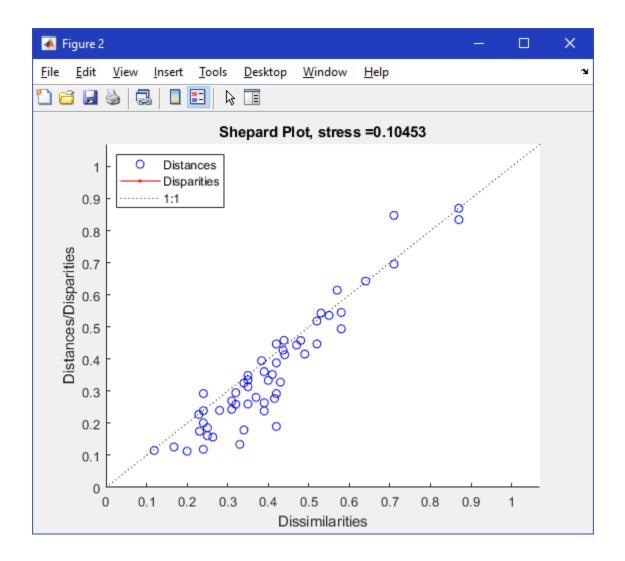




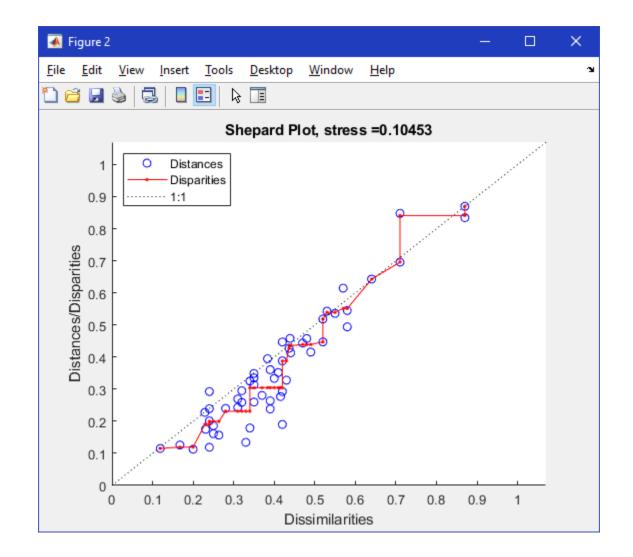
- Nonmetric MDS
- Based on K-S D value
- $\mathbf{x}$  : p(i, j)
  - dissimilarity, rank in this case
- y :  $\hat{d}(i,j)$ 
  - disparity



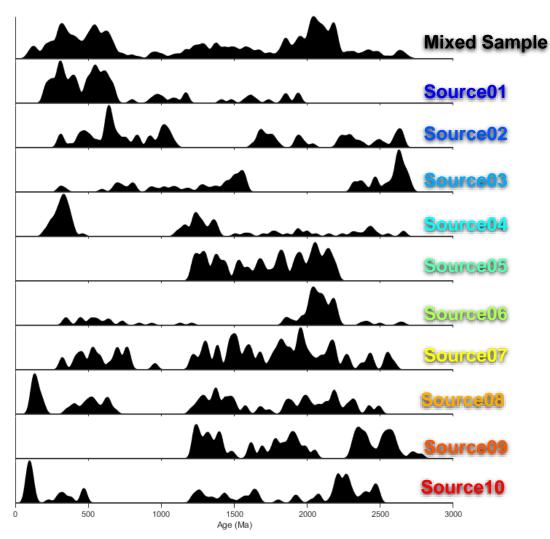
- Nonmetric MDS
- Based on K-S D value
- $\mathbf{x}$  : p(i,j)
  - dissimilarity
- y : d(i,j)
  - distance

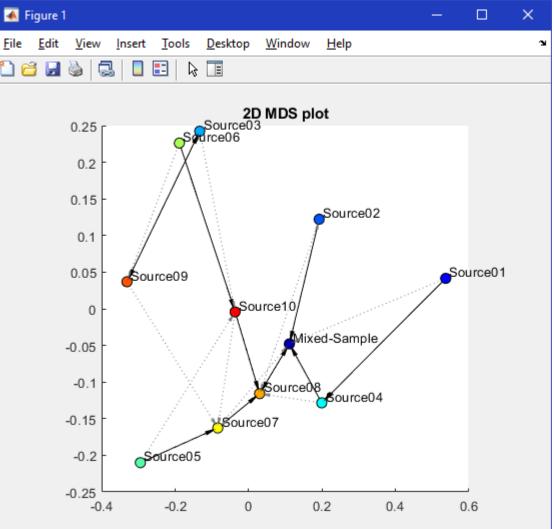


- Nonmetric MDS
- Based on K-S D value
- $\mathbf{x}$  : p(i,j)
  - dissimilarity
- y :  $\hat{d}(i,j)$ 
  - disparity
- y : d(i,j)
  - distance

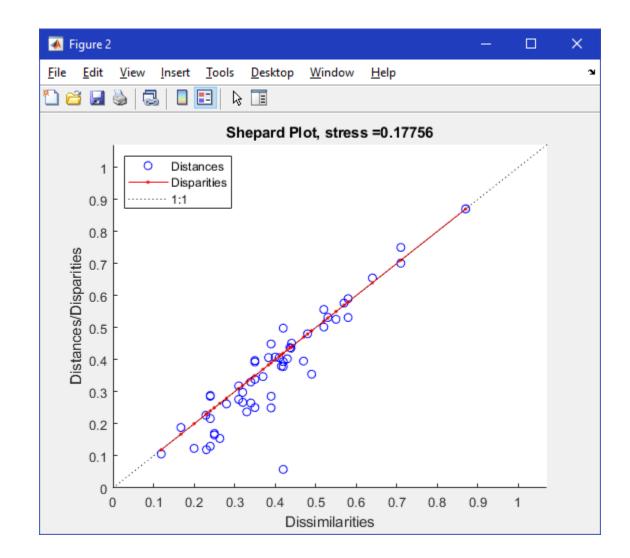


Metric MDS based on K-S D value

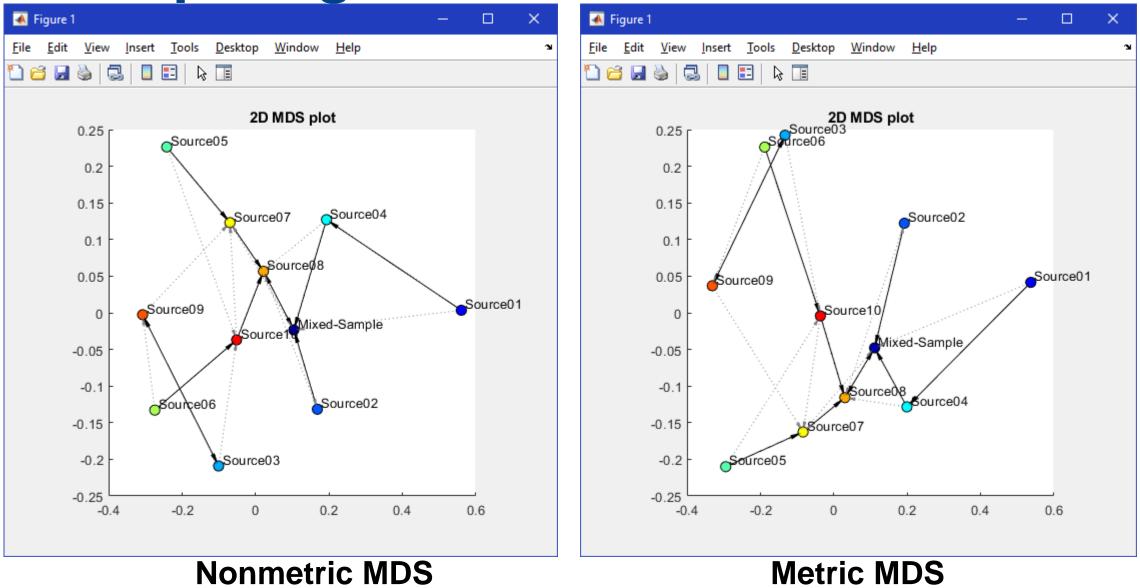




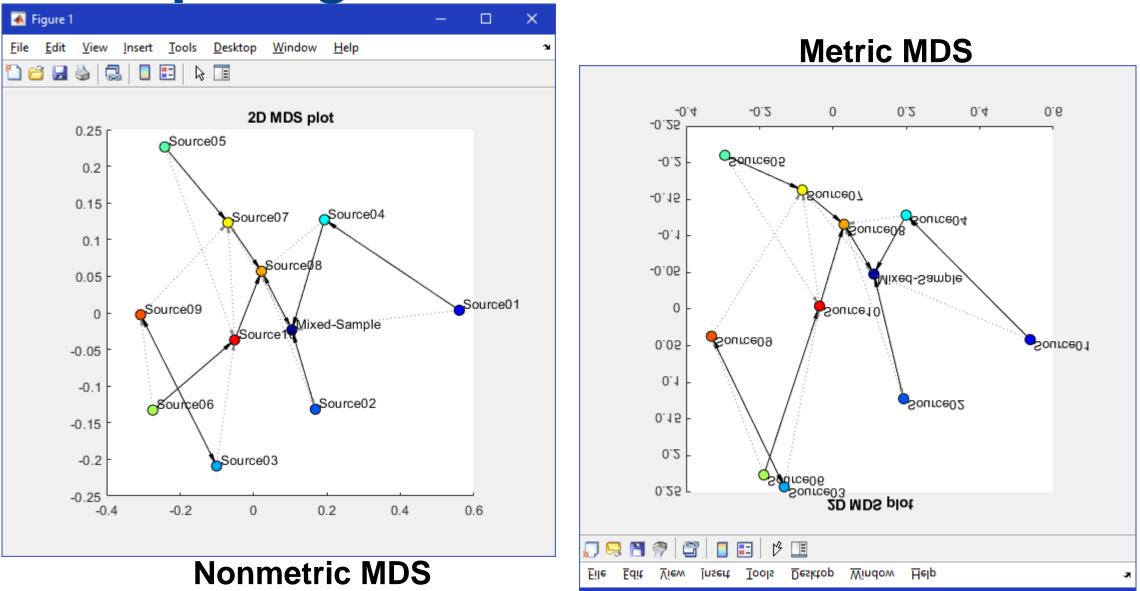
- Metric MDS
- Based on K-S D value
- Stress squared
- $\mathbf{x}$  : p(i, j)
  - dissimilarity
- y :  $\hat{d}(i, j)$ 
  - Disparity
  - Lie on 1:1 line because it is a linear transformation of *p(i,j)*
- y : d(i,j)
  - distance



#### **Comparing Nonmetric and Metric**



#### **Comparing Nonmetric and Metric**



🔺 Figure 1

42

 $\times$ 

