- Plot detrital age distributions
- Plot rim vs core age
- Plot detrital age distribution in comparison to another variable (e.g., Th/U)
- Plot detrital age populations as a bar graph
- Plot sample locations on an interactive map
- Maximum depositional age (MDA) calculations
- Multi-dimensional scaling
- (U-Th)/He vs U-Pb age "double dating" plot



- Plot detrital age distributions
- Plot rim vs core age
- Plot detrital age distribution in comparison to another variable (e.g., Th/U)
- Plot detrital age populations as a bar graph
- Plot sample locations on an interactive map
- Maximum depositional age (MDA) calculations
- Multi-dimensional scaling
- (U-Th)/He vs U-Pb age "double dating" plot



- Plot detrital age distributions
- Plot rim vs core age
- Plot detrital age distribution in comparison to another variable (e.g., Th/U)
- Plot detrital age populations as a bar graph
- Plot sample locations on an interactive map
- Maximum depositional age (MDA) calculations <sub>0.0</sub>
- Multi-dimensional scaling
- (U-Th)/He vs U-Pb age "double dating" plot



- Plot detrital age distributions
- Plot rim vs core age
- Plot detrital age distribution in comparison to another variable (e.g., Th/U)
- Plot detrital age populations as a bar graph
- Plot sample locations on an interactive map
- Maximum depositional age (MDA) calculations
- Multi-dimensional scaling
- (U-Th)/He vs U-Pb age "double dating" plot



- Plot detrital age distributions
- Plot rim vs core age
- Plot detrital age distribution in comparison to another variable (e.g., Th/U)
- Plot detrital age populations as a bar graph
- Plot sample locations on an interactive map
- Maximum depositional age (MDA) calculations
- Multi-dimensional scaling
- (U-Th)/He vs U-Pb age "double dating" plot



- Plot detrital age distributions
- Plot rim vs core age
- Plot detrital age distribution in comparison to another variable (e.g., Th/U)
- Plot detrital age populations as a bar graph
- Plot sample locations on an interactive map
- Maximum depositional age (MDA) calculations
- Multi-dimensional scaling
- (U-Th)/He vs U-Pb age "double dating" plot



- Plot detrital age distributions
- Plot rim vs core age
- Plot detrital age distribution in comparison to another variable (e.g., Th/U)
- Plot detrital age populations as a bar graph
- Plot sample locations on an interactive map
- Maximum depositional age (MDA) calculations
- Multi-dimensional scaling
- (U-Th)/He vs U-Pb age "double dating" plot



- Plot detrital age distributions
- Plot rim vs core age
- Plot detrital age distribution in comparison to another variable (e.g., Th/U)
- Plot detrital age populations as a bar graph
- Plot sample locations on an interactive map
- Maximum depositional age (MDA) calculations
- Multi-dimensional scaling
- (U-Th)/He vs U-Pb age "double dating" plot



#### How to import data?

#### Data is inputted via Excel

- Samples worksheet (default name = "Samples")
- Analyses worksheet (default name = "ZrUPb")

*Note:* data input is a simple relational database with "Sample\_ID" as the primary key of "Samples" and the foreign key that links "ZrUPb" with "Samples"

| A<br>Required Optional (not used) |              |           |             | Optional (used in some functions) |           | Optional<br>(not used) | В                      | Required | Optional (used in some functions) |            |       | Req  | juired  | Optional (used in some functions) |      |         |             |         |   |
|-----------------------------------|--------------|-----------|-------------|-----------------------------------|-----------|------------------------|------------------------|----------|-----------------------------------|------------|-------|------|---------|-----------------------------------|------|---------|-------------|---------|---|
| 1                                 | A            | В         | С           | D                                 | E         | F                      | G                      | 1        | A                                 | В          | E     | G    | U       | V                                 | W    | х       | Y           | Z       |   |
| 1                                 | Sample_ID    | Unit      | Basin       | Age                               | Latitude  | Longitude              | Source                 | 1        | Sample_ID                         | Grain_ID   | U_ppm | Th_U | BestAge | BestAge_err                       | Disc | ZHe_Age | ZHe_Age_err | RimCore | ſ |
| 2                                 | 11-Escanilla | Escanilla | Ainsa Basin | Eocene (Bartonian)                | 42.278474 | -0.122617              | Thompson et al. (2017) | 441      | 7-Guaso                           | 7_Guaso_65 | 128   | 0.52 | 572     | 5                                 | 1.04 |         |             |         |   |
| 3                                 | 12-Escanilla | Escanilla | Ainsa Basin | Eocene (Bartonian)                | 42.267407 | -0.116455              | Thompson et al. (2017) | 442      | 7-Guaso                           | 7_Guaso_60 | 267   | 0.57 | 575     | 7                                 | 1.2  |         |             |         |   |
| 4                                 | 10-Sobrarbe  | Sobrarbe  | Ainsa Basin | Eocene (Bartonian)                | 42.29224  | -0.101188              | Thompson et al. (2017) | 443      | 7-Guaso                           | 7_Guaso_70 | 506   | 0.17 | 579     | 4.15                              | 7.4  |         |             |         |   |
| 5                                 | 7-Guaso      | Guaso     | Ainsa Basin | Eocene (Lutetian)                 | 42.409038 | -0.106831              | Thompson et al. (2017) | 444      | 7-Guaso                           | 7_Guaso_81 | 980   | 0.30 | 590     | 10                                | 1.01 |         |             | Rim     |   |
| 6                                 | 13-Guaso     | Guaso     | Ainsa Basin | Eocene (Lutetian)                 | 42.358007 | -0.156971              | Thompson et al. (2017) | 445      | 7-Guaso                           | 7_Guaso_86 | 80.5  | 2.63 | 591.4   | 4.9                               | 0.94 |         |             |         |   |
| 7                                 | 5-Morillo    | Morillo   | Ainsa Basin | Eocene (Lutetian)                 | 42.379942 | -0.151209              | Thompson et al. (2017) | 446      | 7-Guaso                           | 7_Guaso_28 | 85.7  | 0.87 | 605     | 7                                 | 2.37 |         |             | Core    |   |
| 8                                 | 6-Morillo    | Morillo   | Ainsa Basin | Eocene (Lutetian)                 | 42.414713 | -0.11229               | Thompson et al. (2017) | 447      | 7-Guaso                           | 7_Guaso_92 | 31.28 | 0.64 | 613     | 6.5                               | 1.76 |         |             |         |   |
| 9                                 | 14AB-M02     | Morillo   | Ainsa Basin | Eocene (Lutetian)                 | 42.43641  | -0.07068               | Thompson et al. (2017) | 448      | 7-Guaso                           | 7_Guaso_72 | 98.2  | 2.38 | 617.1   | 2.65                              | 0.33 | 49.8    | 4.0         |         |   |
| 10                                | 14AB-A04     | Ainsa II  | Ainsa Basin | Eocene (Lutetian)                 | 42.433589 | -0.12764               | Thompson et al. (2017) | 449      | 7-Guaso                           | 7_Guaso_49 | 878   | 0.04 | 624.2   | 4.2                               | 1.37 | 202.1   | 16.2        |         |   |
| 11                                | 14AB-A05     | Ainsa II  | Ainsa Basin | Eocene (Lutetian)                 | 42.43343  | -0.12742               | Thompson et al. (2017) | 450      | 7-Guaso                           | 7_Guaso_25 | 157.8 | 1.05 | 631.7   | 4.8                               | 0.19 |         |             |         |   |
| 12                                | 4-Ainsa      | Ainsa I   | Ainsa Basin | Eocene (Lutetian)                 | 42.404218 | -0.14801               | Thompson et al. (2017) | 451      | 7-Guaso                           | 7_Guaso_53 | 58.3  | 0.88 | 632     | 6.5                               | 1.71 |         |             |         |   |
| 13                                | 14AB-A06     | Ainsa I   | Ainsa Basin | Eocene (Lutetian)                 | 42.43364  | -0.1314                | Thompson et al. (2017) | 452      | 7-Guaso                           | 7_Guaso_17 | 180.2 | 0.96 | 634.2   | 3.8                               | 1.77 |         |             |         |   |
| 14                                | 15AB-352     | Banaston  | Ainsa Basin | Eocene (Lutetian)                 | 42.404645 | -0.190405              | Thompson et al. (2017) | 453      | 7-Guaso                           | 7_Guaso_46 | 37.3  | 1.25 | 639     | 5                                 | 1.39 |         |             |         |   |
| 15                                | 15AB-118     | Banaston  | Ainsa Basin | Eocene (Lutetian)                 | 42.45504  | -0.05471               | Thompson et al. (2017) | 454      | 7-Guaso                           | 7_Guaso_61 | 267   | 0.49 | 644.6   | 3.4                               | 0.05 | 50.2    | 4.0         |         |   |
| 16                                | 15AB-150     | Gerbe     | Ainsa Basin | Eocene (Lutetian)                 | 42.38277  | -0.18547               | Thompson et al. (2017) | 455      | 7-Guaso                           | 7_Guaso_7  | 431   | 0.51 | 645     | 5.5                               | 1.23 | 61.5    | 4.9         |         |   |
| 17                                | 3-Gerbe      | Gerbe     | Ainsa Basin | Eocene (Lutetian)                 | 42.39448  | -0.197896              | Thompson et al. (2017) | 456      | 7-Guaso                           | 7_Guaso_8  | 45.8  | 0.86 | 658.5   | 4.6                               | 1.72 |         |             |         |   |
| 18                                | 14AB-G07     | Gerbe     | Ainsa Basin | Eocene (Lutetian)                 | 42.39455  | -0.197719              | Thompson et al. (2017) | 457      | 7-Guaso                           | 7_Guaso_99 | 105.5 | 0.68 | 684     | 9.5                               | 1.01 |         |             | Core    |   |
| 19                                | 2-Arro       | Arro      | Ainsa Basin | Eocene (Ypresian)                 | 42.406398 | -0.238684              | Thompson et al. (2017) | 458      | 7-Guaso                           | 7_Guaso_48 | 86.2  | 0.48 | 738     | 8.5                               | 1.47 |         |             |         |   |
| 20                                | 1-Fosado     | Fosado    | Ainsa Basin | Eocene (Ypresian)                 | 42.428614 | -0.256078              | Thompson et al. (2017) | 459      | 7-Guaso                           | 7_Guaso_73 | 75.9  | 0.85 | 742.6   | 4                                 | 0.79 |         |             |         |   |
| 21                                | 14AB-F01     | Fosado    | Ainsa Basin | Eocene (Ypresian)                 | 42.434566 | -0.248433              | Thompson et al. (2017) | 460      | 7-Guaso                           | 7_Guaso_93 | 82.7  | 1.67 | 790     | 6                                 | 0.01 |         |             |         |   |
| Samples ZrUPb (+)                 |              |           |             |                                   |           |                        |                        |          |                                   | zrUPb      | +     |      |         |                                   |      |         |             |         | Ĩ |

# detritalPy Application

• We will experiment with different options in the plotAll() function



You will then apply what you have learned on two datasets (time permitting)

- Bengal Fan (Blum et al. 2018: Scientific Reports)
- Permian-Triassic of Colorado Plateau (Gehrels et al. 2020: Gchron)

### You may share your plot(s) with the group by visiting this shared Google presentation file

https://docs.google.com/presentation/d/1thdB0AxztzI23\_SScyOVBrcrMTVdhc8BZYw21sNzQNM/edit?usp=sharing

# detritalPy Application

There are two ways to run detritalPy

# colab

### Option 1 (recommended): Google Colaboratory (Google account required)

- 1. Access Google Colab notebook via this link
  - <u>https://gist.github.com/grsharman/db90e2eb5ca</u> 39450b6296754ab310274
- 2. Click "Open in Colab"
- 3. Sign into your Google account
- Select the first cell, either click the arrow button or return Shift+Enter
- 5. Click "RUN ANYWAY" when the warning appears
- 6. Scroll down to the end of the first cell, and click on link above "Enter verification code". Enter code.
- 7. Continue through notebook by executing cells with code, one-by-one



#### **Option 2: Jupyter Notebook**

- 1. Download and Install Python (I recommend the free Anaconda distribution platform)
  - <u>https://www.anaconda.com/</u>
- 2. Install detritalPy
  - "pip install detritalpy"
    - Windows (open Anaconda Prompt)
    - MacOS (open Terminal)
- 3. Download zipped folder on shared Drive folder
  - Unzip on your computer
- 4. Launch Anaconda & Jupyter Notebook
- 5. Open "detritalPy\_GSA2020.ipynb"

#### See Section 2.2 in Step-by-Step instructions

#### **EXTRA SLIDES**

#### How to install and run detritalPy?

- 1. Download Python (I recommend the free Anaconda distribution platform)
  - <u>https://www.anaconda.com/</u>



#### How to install and run detritalPy?

- 1. Download Python (I recommend the free Anaconda distribution platform)
  - https://www.anaconda.com/
- 2. Install detritalPy
  - pip install detritalpy







#### How to install and run detritalPy?

- 1. Download Python (I recommend the free Anaconda distribution platform)
  - <u>https://www.anaconda.com/</u>
- 2. Install detritalPy
  - pip install detritalpy
- 3. Download zipped folder on shared Drive folder
  - Unzip on your computer
- 4. Launch Anaconda & Jupyter Notebook



### How to install and run detritalPy?

- 1. Download Python (I recommend the free Anaconda distribution platform)
  - <u>https://www.anaconda.com/</u>
- 2. Install detritalPy
  - pip install detritalpy
- 3. Download zipped folder on shared Drive folder
  - Unzip on your computer
- 4. Launch Anaconda & Jupyter Notebook
- 5. Open "detritalPy\_GSA2020.ipynb"

Quantitative analysis, visualization, and modelling of detrital geochronology data

shift+enter to run cells

n 3

#### GSA 2020 Short Course

#### Application: detritalPy tutorial

C

Markdown V

X h

Dr. Glenn Sharman, University of Arkansas

detritalPy is an open source Python-based toolset for visualing and analyzing detrital geo-thermochronologic data More information can be found in this article published in 2018 in The Depositional Record and on the detritalPy GitHub site.

To run a cell with code, first select the cell and then either click the arrow button or return Shift+Enter

#### 1. Import required modules

[]: import detritalpy import detritalpy.detritalFuncs as dFunc import pathlib import matplotlib %matplotlib inline %config InlineBackend.figure\_format = 'retina' # For improving matplotlib figure resolution matplotlib.rcParams['pdf.fonttype'] = 42 # For allowing preservation of fonts upon importing into matplotlib.rcParams['ps.fonttype'] = 42 print('detritalPy version: ',detritalpy.\_\_version\_\_)

### Having trouble with detritalPy?

#### Email me with questions!

• gsharman@uark.edu

#### Check back for updates!

• pip install detritalpy --upgrade

| shift+enter to run cells                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| □ D ► C Markdown > Python 3 O                                                                                                                                                                                                                                                                                                                          |
| Quantitative analysis, visualization, and modelling of letrital geochronology data                                                                                                                                                                                                                                                                     |
| SSA 2020 Short Course                                                                                                                                                                                                                                                                                                                                  |
| pplication: detritalPy tutorial                                                                                                                                                                                                                                                                                                                        |
| r. Glenn Sharman, University of Arkansas                                                                                                                                                                                                                                                                                                               |
| etritalPy is an open source Python-based toolset for visualing and analyzing detrital geo-thermochronologic data<br>ore information can be found in this article published in 2018 in The Depositional Record and on the detritalPy<br>tHub site.                                                                                                      |
| o run a cell with code, first select the cell and then either click the arrow button or return Shift+Enter                                                                                                                                                                                                                                             |
| . Import required modules                                                                                                                                                                                                                                                                                                                              |
| <pre>mport detritalpy mport detritalpy.detritalFuncs as dFunc mport pathlib mort matplotlib matplotlib inline config InlineBackend.figure_format = 'retina' # For improving matplotlib figure resolution atplotlib.rcParams['pdf.fonttype'] = 42 # For allowing preservation of fonts upon importing into atplotlib.rcParams['ps.fonttype'] = 42</pre> |

print('detritalPy version: ',detritalpy.\_\_version\_\_)

+ %

[]: